

Production of GHG free hydrogen from methane: significance of porosity of NiO/SiO₂ nanocatalysts

UPM Ashik University of Malaya, Malaysia

Nanoscience and nanotechnology

- Exclusive properties compared to their bulk counterparts
- Finite size effect
- Surface effect
- Macroscopic quantum tunneling effect
- Optical
- Electronic
- Magnetic

- Catalysis
- ➢ Fuel cells
- Gas sensors
- Photo-electronic devices
- Energy storage devices
- > Super-capacitors
- Lithium ion batteries

Preparation of *n***-NiO/SiO**₂ **catalyst**

Catalyst	Ni(NO ₃) ₂ .6H ₂ O (gm)	TEOS (mL)	C18TMS (mL)
S1	17.45	0.6	0.6
S2	17.45	1.2	0
S3	17.45	0	1.2
S4	17.45	0.9	0.3
S5	17.45	0.3	0.9

Thermocatalytic decomposition of methane

- Fixed catalyst bed reactor
- Inner diameter = 3.03 cm,
- Wall thickness = 0.87 cm
- Height = 120 cm
- 0.5 g of catalyst
- Reduction at 550 °C
- **99.995%** methane
- TCD at 625 °C

XRD

 $\left(\begin{array}{c} (2,0,0) \\ (1,1,1) \\ (2,2,0) \\ (3,1,1) \\ (2,2,2) \\ (3,1,1) \\ (3,1,1) \\ (2,2,2) \\ (3,1,1) \\ (3,1,1) \\ (2,2,2) \\ (3,1,1)$

S5 S4

S3

S2 S1

- Good agreement with JCPDS No.: 01-073-1523 for NiO phase
- S2 1.2 mL of TEOS lower intensity lower structural ordering - poor catalytic stability
- 1.2 mL of C18TMS and mixture of TEOS and C18TMS - better crystal order - catalytic performance

Sample	2θ (°)	Ni (111) (nm)	Ni (200) (nm)	Ni (220) (nm)	Avg. crystal size (nm)
S1	37.22, 43.26, 62.81	31.13	31.74	34.57	32.48
S2	37.21, 43.23, 62.69	38.04	31.80	13.57	27.80
S3	37.22, 43.26, 62.84	26.34	24.93	23.77	25.01
S4	37.23, 43.27, 62.83	34.25	31.74	38.03	34.67
S5	37.30, 43.33, 62.91	24.46	23.28	25.36	24.37

Nitrogen adsorption-desorption measurements

Catalyst	Single point SAª (m²/g)	BET SA (m²/g)	Micropore area ^b (%)	Mesopore + external area ^c (%)	Micropore volume ^d (cm³/g)	Mesoporous volume (cm³/g)	Total pore volume ^e (cm³/g)	BET pore size (nm)	Mean particle size (nm)
S1	81.74	83.26	16.1	83.9	0.0059	0.1444	0.1503	8.182	36.02
S2	115.76	117.90	8.1	91.9	0.0051	0.1804	0.1855	7.072	25.44
S3	70.19	71.84	11.1	88.9	0.0066	0.1747	0.1813	9.273	41.75
S4	84.76	86.92	13.7	86.3	0.0065	0.1538	0.1603	7.400	34.51
S5	50.29	51.51	26.8	73.2	0.0079	0.1192	0.1271	6.702	58.92

- Addition of C18TMS porogen increase microporous area
- 0.3 mL of TEOS and 0.9 mL of C18TMS 26.8% of microporous area
- 1.2 mL of TEOS shown lowest microporous area (8.1%)

Thermocatalytic methane decomposition

- n-NiO/SiO₂ catalyst prepared by co-precipitation cum modified Stöber method rapidly deactivate above 675 °C
- S1 (0.6 mL of C18TMS and 0.6 mL of TEOS) exhibited stable performance with a higher hydrogen production
- S3 (0 mL of TEOS and 1.2 mL of C18TMS) executed lowest activity loss of 17.46%

Ashik, U. P. M., & Daud, W. M. A. W. (2015). Nano-nickel catalyst reinforced with silicate for methane decomposition to produce hydrogen and nanocarbon: synthesis by co-precipitation cum modified Stober method. *RSC Advances*, *5*, 46735-46748. doi:10.1039/C5RA07098H

Thermocatalytic methane decomposition

S1

- Tip-growth mechanism of nano-carbon formation
- The crystallite size of S1, S2 and S3 calculated from XRD patterns were 26.1, 33.63 and 22.86 nm, respectively.
- The average diameter of nano-carbon measured with ImagJ software were 24.74±3.1 nm, 27.94±2.8 nm and 36.84±4.1 nm
- Average diameter of nano-carbon is decreasing as increasing the quantity of C18TMS

Conclusion

- The particle size, porosity and catalytic activity management was efficiently governed by the systematic variance in the ratio of C18TMS porogen to TEOS silica precursor
- Microporous characteristics was increased from 10.7% to 26.8% by increasing the quantity of C18TMS compared to TEOS in preparation mixture
- Absence of C18TMS in the preparation mixture resulted in the lower crystal structure order and hence lower catalytic stability
- Maximum catalytic stability for methane decomposition was observed with catalyst prepared with 1.2 mL of C18TMS and 0 mL of TEOS
- Catalyst prepared with 0 mL of C18TMS and 1.2 mL of TEOS exhibited lowest catalytic stability

Gratefully acknowledge the financial support from postgraduate Research Fund (UM.C/HIR/MOHE/ENG/11), University of Malaya,

Malaysia.

